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Abstract

For the purpose of analyzing complex structures of fractional and fractional absolute derivative

spectra in near-infrared spectroscopy, two-dimensional correlation spectroscopy is applied by ex-

tending it to represent correlation with the constituent concentration of interest. To this end, av-

erage over external variable for the ordinary 2D correlation spectroscopy is replaced by ensemble

average over many samples and inserting a variable for the concentration of the target constitu-

ent. The third-order correlation defined by a simple insertion of the concentration variable is

found to convey no significant information of the constituent. The fourth-order correlation de-

fined by an insertion of the square of the concentration variable is found to work for this pur-

pose. It is shown that care must be taken in interpreting auto- and cross-peaks in the fourth-order

correlation spectra because of the square insertion of the variable.

1. Introduction

In near-infrared (NIR) spectroscopy, derivatives of spectra sometimes play a key role in improving

prediction performance.1) Since the higher-order differentiation enhances high frequency noise compo-

nents as well as fine structures in the spectra, however, the order of traditional derivatives is practi-

cally limited to one and two. To introduce additional flexibility in the order of differentiation, it can

be extended to any positive number �by means of scaling filtering in the Fourier domain, which

leads to a fractional derivative (FD).2,3) Shift and inversion of peaks associated with first, second and

fractional derivatives sometimes make it difficult to identify the exact wavelengths of absorption

peaks. Such unfavorable deformation can be suppressed by employing a fractional absolute derivative

(FAD).4−6) It was shown that FD and FAD give rise to better prediction performance when an adequate

derivative order �is chosen.7) As �increases, however, FD and FAD spectra get complicated gradu-

ally, growing finer new peaks, the mutual relations of which become also complicated. In this paper,

generalized two-dimensional (2D) correlation spectra are investigated for examining correlation prop-
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erties within and among raw, FD and FAD spectra, by introducing a new approach to extract 2D cor-

relation peaks that are correlated with individual constituents.

2. Materials and methods

Samples and data

NIR spectra of 1100−2500 nm with 2 nm interval and chemical values for moisture, amylose and

protein concentrations were obtained from 31 samples of rice flour in different varieties. From the

spectra, FDs and FADs of various orders �were calculated after MSC pretreatment using MATLAB,

from which 2D correlation spectra of several different types were calculated. The raw spectra after the

MSC pretreatment are denoted by����in the following.

Fractional and fractional absolute derivatives

FD of order �of a function ����is denoted and defined by5,6)

��
���������

�

��������� ����������� ���� (1)

where ����is the Fourier transform of ����. This is an extension of the ordinary derivative to that

with an arbitrary positive order �. As a modification of FD, FAD is denoted and defined by5,6)

�
���
���������

�

�������� ����������� ���� (2)

which provides completely non-shifted derivative peaks. As is in ordinary derivatives, FD and FAD

defined in eqs. (1) and (2) suffer from high-frequency noises as �increases. To suppress them, a

Gaussian low-pass filter is actually inserted in the integrands in eqs. (1) and (2).

Two-dimensional correlation analysis

Generalized 2D correlation spectroscopy is a powerful tool for analyzing correlation properties be-

tween same or different spectra at different wavelengths.8) The 2D correlation spectrum of spectra

����and 	���are defined by


������ �� ������� ��	����� �� �
�
� (3)

where������	
� and �	�	�		
�, and 	
� stands for an average with respect to an external

variable �. Since we do not use any controllable external variable in this paper, however, we replace

	
�by an ensemble average 	
over many samples, and therefore we have
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������� �� ������������� �� (4)

In this case, the 2D spectrum of eq. (4) expresses overall correlations reflecting variations of all the

constituents in the samples.

In many cases in NIR spectroscopy, 2D correlation peaks are required that reflect correlations ex-

clusively with a certain target constituent. Though it is possible to employ the constituent concentra-

tion as the external perturbation variable to this end,9) a relatively large number of samples are

needed. As an alternative approach, we consider correlations of a higher order. The first idea would

be the third order correlation involving the concentration �of a constituent of interest :

�������� �� ��������������� �� (5)

where ��������. This function seems to have high values where the three variables vary all in

phase. In reality, however, this is not the case, as seen from the fact that any odd order moment of a

zero-mean Gaussian variate vanishes. Let us consider then the fourth order correlation of the form of

�������� �� ��������������� ��� �� (6)

We also discuss normalized versions of 2D correlation spectra in eqs. (4)−(6). Equation (4) is nor-

malized in a common manner to be

������� ��
������� �

������������
�
������������� �
������������

� (7)

where �����and �����stand for the standard deviations of ����and ����, respectively. To nor-

malize �������� �, we consider that the fourth-order correlation of any zero-mean Gaussian variates re-

duces to the sum of the pair products of the second-order correlations,10) namely,

�������������� ����������� ������� ������ �	����� ������ �	����� ������ �� (8)

This relation indicates that the fourth-order correlation should be normalized as

�������������� ��
��������� �
���������
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����

����� �
����

� �� (9)

since ����when �����������. Therefore, �������� �can be normalized as

�������� ��
�������� �

���������������
�
�
��������������� ��� �
���������������

�
� (10)

Though we do not have a suitable reasoning like eq. (8) for the third-order correlation, let us normal-

ize it similarly as eq. (10) at this moment;
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���������������
�
��������������� �
���������������

� (11)

3. Results and Discussions

Figures 1(a)−(c) show 2D correlation spectra ������� �of (a) raw spectra ����, (b) FD spectra of

0.6th order and (c) FAD spectra of 0.6th order, respectively, all versus the raw spectra ����. These

spectra are denoted here by ������� �������−�����, ������� ����
��������−����� and ������� �

��
���
��������−�����, respectively, or ���−�, ����

����−� and ���
���
����−�, respectively, for short.

(a)�����−����� (b) ����������−�����

(c) ����
��������−����� (d) Color map for the correlation value.

Fig. 1 2D correlation spectra ������� �of the second order.
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The color map for the 2D correlation value is shown in Fig. 1(d). In Fig. 1(a), a strong autopeak ap-

pears at 1900−2030 nm due to a strong absorption peak in this region. Similar quasi-autopeaks also

appear in Figs. 1(b) and (c). The term “quasi-” is used because the peaks are separated slightly in ��

direction into smaller ones and deformed from the autopeak as they would be without differentiation

by ��. The shape of these quasi-autopeaks expresses how the correlation is deformed and separated by

fractional differentiation. Note that the correlation peaks in Fig. 1(b) are slightly shifted to smaller ��

(downward) as compared with Figs. 1(a) and (c) due to the peak-shift effect of FD. In this respect,

(b) ����������−�����(a)�����−�����

(c) ����
��������−�����

Fig. 2 Normalized 2D correlation spectra ������� �of
the second order.

Fig. 3 Normalized 2D correlation spectra �������� �
������−�����of the third order.
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the spectrum ���
���
����−� is rather similar to ���−�as compared with ����

����−�.

Dependence of the 2D correlation spectrum ������� �on the magnitude of the absorbance can be

removed by normalizing it in the form of eq. (7), results corresponding to Figs. 1(a)−(c) being shown

in Figs. 2(a)−(c), respectively. The correlation peaks in Figs. 2(b) and (c) are again separated in ��di-

rection due to the effect of differentiation. In these figures, however, very many correlation peaks ap-

pear due to the contributions from all the constituents, making interpretation of the spectrum difficult.

To extract correlation peaks that are correlated with a certain constituent, a normalized third-order

correlation ��������−�����was calculated from eq. (11) with protein as the target constituent and is

(b) ����������−�����(a)�����−�����

(c) ����
��������−�����

Fig. 4 Normalized 2D correlation spectra �������� �. Fig. 5 �������� �������−�����with some marks at
auto- and cross-peaks.
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shown in Fig. 3. As predicted theoretically, the third-order correlation spectrum is almost vanishing,

and it is confirmed that this type of correlation conveys almost no information of the target constitu-

ent.

According to the theoretical result of eq. (10), the fourth-order correlation �������� �was calculated

with protein as the target constituent and is shown in Figs. 4(a)−(c) for the same combinations of

spectra as Figs. 1 and 2. This figure clearly shows that the 2D correlation peaks focused on protein

are extracted and it is expected that the cross-peaks provide information of the relation between two

spectra, such as those before and after fractional differentiation.

To examine correlation peaks in Fig 4(a), this spectrum is show again in Fig. 5 with some sym-

bols. In this spectrum, some quasi-autopeaks, e.g., at 1570, 1780, 2050, 2100 and 2200 nm are ob-

served as indicated by blue circles, and cross-peaks are seen at (1570, 1780) and (2050, 2200) nm as

indicated by green circles. However, there are no cross peak at (2050, 2100) and (1570, 2200) nm,

where two arrows point. Care should be taken in interpreting �� since the sign of variations in ��is

not distinguished in eq. (10). The wavelengths of 2050 and 2200 nm are known to be assigned to

protein, and there does exist the cross-peak between these wavelengths. However, the quasi-autopeaks

at 1570, 1780 and 2100 nm prove to be false correlation with protein since these wavelengths do not

have cross-peaks with 2050 or 2200 nm. Namely, if ������increases and ������decreases when

�� increases, autopeaks will appear both at �� and �� because ������� ����� ��� � and

������� ����� ��� �are positive, but ��������������� ��� �is negative. On the other hand, cross-

peaks at 1670 and 1720 nm correlated with 2200 nm show that they become correlated with protein

for �����, as is seen in Fig. 4(c), while not correlated in the raw spectrum. Therefore, it is con-

cluded that the fourth-order correlation �������� �is suitable for analyzing structural change in NIR

spectra as the derivative order changes in FD or FAD.

4. Conclusions

Derivative spectra of NIR spectroscopy have very many peaks produced by decomposition of over-

lapped or complex peaks. In particular, spectral structures of fractional and fractional absolute deriva-

tives change in a complex manner depending upon the order of differentiation. To help examining

those structures, two-dimensional correlation spectroscopy is applied by extending it to be correlated

with the constituent concentration of interest. To this end, average over external variable for the ordi-

nary 2D correlation spectroscopy is replaced by ensemble average over many samples and inserting a

variable for the concentration of the target constituent. The third-order correlation defined by a simple

insertion of the concentration variable is found to convey no significant information of the constituent.
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The fourth-order correlation defined by a insertion of the square of the concentration variable is found

to work well for this purpose. A suitable way of normalization is given and shown to work correctly.

It is shown that care must be taken in interpreting auto- and cross-peaks in the fourth-order correla-

tion spectra because of the square insertion of the variable. It is shown that the proposed 2D correla-

tion spectra are effective in interpreting complex structures of fractional and fractional absolute de-

rivative spectra in NIR region.

The content of this paper has been presented in conferences and has been partly published in their

abstracts.11, 12)
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